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We determine the relationships between the structural elements of geometric bodies 
represented as plane or three-dimensional systems in the form of hinged-rod or rigid 

hingeless lattices by considering the intersections and gaps of the latter in a plane field. 
Three-dimensional bodies can be investigated by projecting them on a plane. The pro- 

jections considered in the present paper exclude complete coincidence of individual 
elements. One way of establishing the relationships between the elements of plane and 

three-dimensional bodies is by mathematical induction. 

1. Initial aatumptfon8, We begin by defining some terms: 
Rods are straight or curvilinear bodies one of whose dimensions is large compared 

to the other. These bodies possess three degrees of freedom in a plane and five degrees 
of freedom in space. 

Disks are bodies or geometrically nonvarying links with three degrees of freedom 

in a plane and six degrees of freedom in space. 
Hingeless (free) intersections are domains or points of contact between elements 

(disks, rods, or both). 
Hinged intersections are domains or points of contact between elements into which 

hinges have been introduced. 
Gaps are individual closed domains within the outer contour whose dimensions can 

be determined by direct calculation of the ares of clearance. 
We assume that the gaps can be of any shape, e. g. a uniangle (a domain bounded by 

a closed curve with a single acute or obtuse corner), a biangle (a domain bounded by a 
closed curve.with two acute or obtuse corners or one of each), a triangle, a polygon, or 
a nonangle (a domain bounded by a closed curve with smooth transitions from one curve 

to another). 
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2. Plane and three-dimentionrl bodier. The relationship between the 
geometric structural elements of models of plane and three-dimensional free bodies can 
be expressed in general form as 

M - np* - y = l/3 (npO + s, + p - 2&J - 3 d) (2.1) 

npX = IQ + 2nsX + . . . + (k - 1) rzkX (2.2) 

Here M is the number of gaps, npX is the reduced number of hingeless (free) intersec- 

tions, Q* is the number of k-tuple free intersections, k is the number of element ends 

forming a free intersection, and Y is the number of free bodies, systems, or elements. 

(By “free elements” we mean unattached, fixed-base combinations of disks, hinges (points), 
and rods (straight or curvilinear lines) formed by hingeless or hinged intersections, or 

both). 
The reduced number npo of nodal or hinged intersections is given by 

rzpO = (O-l) no0 + (1 - 1) rzlo + In,” + . . . + (h - 1) n/Lo (2.3) 

where nk” is the number of k-tuple nodal or hinged intersections. k is the number of 
element ends forming a nodal or hinged intersection, S,, is the number of rods in the 

model of a geometric body, the number of lines constituting a geometric figure, or the 

number of ribs of the polyhedra forming the framework of a model, and p =z P,, i- p’ = 

= 2p,’ + 3p,; p is the total number of internal connections, pn is the number of internal 
connections over the hinged sections, p’ is the number of internal connections over the 
disk sections, p,, is the number of cuts over the disk sections required for the complete 
elimination of individual closed contours (gaps), pO’ is the number of necessary cuts over 

the hinged-disk sections, n, is the number of simple hinges (this applies to the nodes of 
a rod lattice exclusively),geometric points, nodes, or vertices of polyhedra ; d is the 
number of disks. 

We can transform relation (2.1) as follows : 

y-’ [M - npx - V3(npo + So + p - 2n, - 3d)] = const = 1 (2.4) 

The notation 
fifpY = M - npx, MP = V3 (npo + So + p - 2n, - 3d) 

where Mpy is the reduced number of plane graphs and M,is the reduced number of gaps, 
enables us to rewrite relation (2.1) as 

r-’ (MPY - MP) = const = 1 (2.5) 

Let us formulate this relation as a theorem. 

Theorem. The ratio of the difference between the reduced number of plane graphs 

MP, and the reduced number of gaps MP to the number of bodies Y for models of plane 
and three-dimensional geometric bodies is constant and equal to unity. 

We provide relations (2.1)-(2.5) by mathematical induction. (We omit the proof 
from the present paper). 

C or o 11 a r y . It is easy to see that in the case of hinged-rod models, when [1] 

p = d = 0, 2Mp = npo - no, 2S, = npo + no 

relation (2.1) can be rewritten as 

MP’ = M - n x - y = So - no = npo - So = 1/2 (npo - no) P (2.6) 

For models of geometric systems represented as rigid-lattice systems (the framework 
of a ningeless system for which So = no = npo = 0) relation (2.1) is of the form 
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M,“=&f-nn,X-~qrci (2.7) 

It is clear that the reduced numbers of gaps for the same model (or group) in the two 
cases is M,=:Mpr=M,” (2.81 

If we limit ourselves to convex polyhedra for y =I, then Eq. (2. 8) and the Decartes- 

Euler formula [2, 33 for the number of faces 

f ZZZ S, - no+- 2 (2.9) 

imply that the difference N - nPX is the reduced number of plane graphs or the number 
(minus one} of faces of a complex polyhedron, 

M-‘ZpX= r- 1, IT=iw - npx + i (Z*lO> 
This implies that 

I? =M - II$kx + v = MrJ + 2y (2.11) 
when y > 1. 

Comparison of formulas (2.8) and {i?. Xi) also yields the following relations for the 

number of faces of convex polyhedra : 

I = MP + 2y = S, - rbO + 2y = rzPo - S, + 27 = 
= ‘la (r&J)0 - no) -t 2Y = PO - d + 2Y (2.12) 

(The first three relations of{& 12) were proved in 1953 p]). 

It is easy to show that in the case of mutual self-projection of models of convex poly- 
hedra the formula for the number of faces can be written as 

P = MP f- 2$ J&J=~-~x-% u’&*v f2‘f3 1 

Here y is the number of free elements (the number of individual combinations of 
various geometric elements) and 9’ is the number of individual polyhedra, 

If p’ = y, then formula (2.13) becomes formula (8.12). Let us consider some exam- 

ph. 

Fig. 1 Fig. ‘2 

Example 1. For the model of a dodecahedron shown in Fig. 1 we have 

M= 19, npx = 8, y = 1, npo= 40, So= 30, n,= 20 

min p. = 19, min d = 9 

According to relations (d. 11) and (a. 12) the number of faces is 

r = 19-3 + 1 = 30 -20 + 2 = 40-30 + 2 = I/, (40-20) -i_ 2 = 19-9 -+- 2 = 12 

Example 2. Let us verify relation fi?. 13) for a case of mutual self-projection of 
two polyhedra (a tetrahedron and a hexahedron; see Fig. Z]. Here 
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.M = 25, nzx = 16, nsx = 1 

and according to relation (2.2) 

nP X=l.~X+2n~x=--1.16+2.1=18 

Y = 1, y’ = 2, npQ = 24, S, - 18, no = 12, min p. = 25, min d = 19 

The reduced number of gaps MP given by relation (2.8) is 

M, = 25--18-i = 18--12 = 24 - 18 = I/% (24--12) = 25-49 = 6 

According to relation (2.13) the number of faces is 

l?=Mp+2y’==6+4=10 
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Two continuity equations describing a symmetric two-way traffic flow are considered. 
These equations are then used to find the instant of formation of a shock wave by the 
Riemann method. 

The theoretical analysis of traffic flows has lately received much attention ; theories 
of traffic flows have been constructed on the basis of analysis of motion of descrete ob- 

jects (often called “motorcars”), mathematical statistics @, 21. classical mechanics [3- 

-53. and statistical mechanics [S]. Survey 153 contains a discussion of studies applying 
the hydrodynamic analogy to traffic flows. The first of the two current trends of research 
is based on the kinematic wave theory ; the second is based on the Greenberg relation 

for continuous traffic flows. The kinematic waves traveling opposite to the direction of 
traffic and the distinctions between them and dynamic waves are considered in [3]. 

We make use of the hydrodynamic model of a two-way traffic flow. The traffic flow 

in this model is described by two continuity equations and by two empirical relationships 
between the velocities and densities of the flows of cars moving in opposite directions. 
The hydrodynamic model of a traffic flow enables us to predict the formation of shock 
waves and to analyse many cases of shock wave propagation in the flow. The basic pro- 

perties of traffic flow are established in 143. 


